martes, 7 de mayo de 2013


3.2 VISUALIZACIÓN DE OBJETOS  


No cabe duda de que la representación tridimensional del territorio abre nuevas posibilidades en el ámbito geográfico. Pero el 3D por sí solo no está justificado. Las acciones para la navegación por una escena tridimensional son más complejas que las necesarias para la navegación en un plano. Cada aplicación de software ha resuelto de manera distinta, la manera de controlar la elevación, rotación y cabeceo del punto de vista, lo que requiere un aprendizaje por parte del usuario. Además, el tiempo real de las escenas exige más cantidad de recursos, tanto de cálculo como de datos.



  
La representación tridimensional es conveniente cuando la visualización de una tercera magnitud, típicamente la elevación del terreno, resulta útil para la interpretación de los datos que se quieren mostrar. Se presentan a continuación algunos de los usos más comunes.


       GRAFICACION 2D                                         GRAFICACION 3D


              




PROYECCIONES
Existen dos métodos básicos para proyectar objetos tridimensionales sobre una superficie de visión bidimensional. Todos los puntos del objeto pueden proyectarse sobre la superficie a lo largo de líneas paralelas o bien los puntos pueden proyectarse a lo largo de las líneas que convergen hacia una posición denominada centro de proyección. Los dos métodos llamados proyección en paralelo y proyección en perspectiva, respectivamente, se ilustran. En ambos casos, la intersección de una línea de proyección con la superficie de visión determinada las coordenadas  del punto proyectado sobre este plano de proyección. Por ahora, se supone que el plano de proyección de visión es el plano z = 0 de un sistema de coordenadas del izquierdo.





PROYECCIÓN EN PARALELO
Una proyección en paralelo preserva dimensionar relativas de los objetos y esta es la técnica que se utiliza en dibujo mecánico para producir trazos a escala de los objetos en las dimensiones. Este método sirve para obtener vistas exactas de varios lados de un objeto, pero una proyección en paralelo no ofrece una presentación realista del aspecto de un objeto tridimensional.




Las vistas formadas con proyecciones en paralelo se pueden caracterizar de acuerdo con el angulo que la dirección de proyección forma con el plano de proyección. Cuando la dirección de proyección es perpendicular al plano de proyección, se tiene una proyección ortogonal.Una proyección que no es perpendicular al plano se denomina proyección oblicua.






PROYECCIÓN ORTOGONAL
La Proyección ortogonal es aquella cuyas rectas proyectantes auxiliares son perpendiculares al plano de proyección (o a la recta de proyección), estableciéndose una relación entre todos los puntos del elemento proyectante con los proyectados.

Existen diferentes tipos:
Vista A: Vista frontal o alzado

Vista B: Vista superior o planta
Vista C: Vista derecha o lateral derecha
Vista D: Vista izquierda o lateral izquierda
Vista E: Vista inferior
Vista F: Vista posterior






Las ecuaciones de transformación parea efectuar una proyección paralela ortogonal son directas.Para cualquier punto (x, y, z), el punto de proyección (Xp, Yp, Zp) sobre la superficie de visión se obtiene como Xp=X, Yp=y,  Xp=0.

PROYECCIÓN  OBLICUA.

Es aquella cuyas rectas proyectantes auxiliares son oblicuas al plano de proyección, estableciéndose una relación entre todos los puntos del elemento proyectante con los proyectados.




Una proyección Oblicua se obtiene proyectando puntos a lo largo de líneas paralelas que no son perpendiculares al plano de proyección. La figura muestra una proyección  oblicua de un punto (x, y, z) por una línea de proyección a la posición (xp, Yp).




PROYECCIONES PERSPECTIVA
Para obtener una proyección en perspectiva de un objeto tridimensional, se proyectan puntos a lo largo de líneas de proyección se interceptan en el de centro de proyección.
En el centro de proyección está en el eje z negativo a una distancia d detrás del plano de proyección. Puede seleccionarse cualquier posición para el centro de proyección, pero la elección de una posición a lo largo del eje z simplifica los cálculos en las ecuaciones de transformación. 
Podemos obtener las ecuaciones de transformaciones de una proyección en perspectiva a partir de las ecuaciones paramétricas que describen la línea de proyección de esta línea.
X’ = x –xu
Y’ = y- yu
Z’ = z-(z + d) u

El parámetro u toma los valores de 0 a 1 y las coordenadas (x’, y’, z’) representan cualquier posición situada a lo largo de la línea de proyección. Cuando u = 0.



Las ecuaciones producen el punto P en las coordenadas (x, y, z). En el otro extremo de la línea u = 1 y se tienen las coordenadas del centro de proyección, (0, 0,-d). Para obtener las coordenadas en el plano de proyección. Se hace z’ = 0 y se resuelven para determinar el parámetro u:
Este valor del parámetro u produce la interacción de la línea de proyección con el plano de proyección en (xp, yp,  0). Al sustituir las ecuaciones, se obtienen las ecuaciones de transformación de perspectiva.
Mediante una representación en coordenadas homogéneas tridimensionales, podemos escribir la transformación de la perspectiva en forma matricial.


Las coordenadas de proyección en el plano de proyección se calculan a partir de las coordenadas homogéneas como:
[xp yp  zp  1] = [xh/w yh/w zh/w 1]
Cuando un objeto tridimensional se proyecta sobre un plano mediante ecuaciones de transformaciones de perspectiva, cualquier conjunto de líneas paralelas del objeto que no sean paralelas al plano se proyectan en líneas convergentes.


BIBLIOGRAFIA:
GRAFICACIÓN POR COMPUTADORA
AUTOR: DONALD HERAN /M.PAULINE BAKER


INTEGRANTES:
Cruz González Juan Carlos 10500297
González Del Angel Eduardo 10500304
Lopez Perez Cristiahn 10500313


No hay comentarios:

Publicar un comentario